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Why capacity expansion model?

A capacity expansion model determines the optimal investment strategy for expanding energy
infrastructure, such as power generation, transmission, and even flexible loads over a planning horizon.
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GenX Model

MIT Energy Initiative tool for long-term policy and
techno-economic analysis
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GenX in a nutshell

Inputs Outputs
2. Each zone is defined by an annual 1. The user defines a transmission network 5. GenX finds the cheapest combination of
electricity (& other) demand timeseries (and local distribution) technologies which meets the demand
Reports system and zone outcomes:
* Costs * Transmission
~ losses

* Average price

*  Emissions
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3. Generation, storage and transmission

6. GenX returns optimal investment and
technologies are defined based on economic,

operation decisions for each zone and line

performance, & availability parameters "
Capacity
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Costs: 4MWh / 10MWe
Fixed Costs:
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Performance: Performance:
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Availability * Cycle eff.
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4. Public policies and resource constraints
are added per-zone or system-wide

Capacity reserves . RPS
CO, Cap . Non-service penalties
CO, price .
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How do capacity expansion models work?

* Where And How To Invest In Capacity,
 How To Dispatch Or Operate That Capacity,

 Which Consumer Demand Segments To
Serve Or Curtail,

« How To Cycle And Commit Thermal Units
Subject To Unit Commitment Decisions,

 And Where And How To Invest In Additional
Transmission Network Capacity To
Increase Power Transfer Capacity Between
Zones.

%
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Objective:

Minimize based on planning horizon T and zones Z

Capital costs of generation capacity

Fixed and variable operation & maintenance costs

Value of lost loads

Fuel Cost, start-up or shut-down costs

Network expansion costs



How do capacity expansion models work?

CEMs form a constrained optimization problem:

o _ _ min 10z + 15y Objective function (cost)

Group all your decision variables into a vector x s.t.
C e . z+y>10 Grid Demand
Minimize the cost of the system: f(X) 95z + 70y < 1000 Construction constraint
subject to a set of equality constraints: g(x) = a 40z + 5y < 200 Emissions constraint
z,y>0 Non-negativity constraints

and a set of inequality constraints: A(x) <= b

Many CEMs stick to linear constraints
This means the constraints become a matrix; Ax <=c¢

This makes the problem easier to solve so allows for much larger models



How do capacity expansion models work?

Let's say we're modelling a systems with 2 zones, 3 possible resources and 10 time steps
x has at least 66 elements: 6 investment variables and 6x10 power-output variables

The objective function, f(x), is the sum of their operating costs:

f(x) = Zi:1:6 (($inv + $fix O&M)l-Ci + Zt=1;10($fuel + $var O&M)ipoweri,t + )

The constraints look like:

Capacity constraints: Powery ; < C;, Power; ; < (y, ..

Power flow constraints:}.; i, sone 1 POWer; 1 — Demand, — (net transmission out); = 0
Storage: (Stored energy); , = (Stored energy); 1 — (losses); 1 + (net charging); 4

Emissions: };_1.¢ .t=1.10 Power; ;(Emissions intensity); < (emission limit)



Functions in GenX

genx_settings.yml U X

Tutorials > example_systems > 1_three_zones > settings > genx_settings.yml
1




Model Constraints for thermal units-
Linear Programming vs. Unit Commitment

+ Many existing models establish each plant's ~ Large set of binary and linear constraints,
unit commitment and operational constraints increased computation time.

(start-up, shut-down, dispatch output, etc.). &0 &0 0
I Wex ] Wor [ Wo;

_ > Binary decision variables (e.g., plant
* Clustering approach: The same type of power operation/ plant shut-down) are replaced with

plants are grouped into  clusters, positive integer variables.

standardizing their technical characteristics. Vo JiPse) Pso JiPse
) Qoa.s [T Q7 or.s

. Linear relaxation: The same type of power » Positive integer variables are relaxed to linear
plants are grouped into  clusters, variables.

standardizing their technical characteristics. r)—‘g\?\}-ﬂ@\ [0, 5] }'}é(:)u'}_?\ [0, 5]
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Clustering for representative weeks -
An effective way to reduce computation costs
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An example is clustering annual demand profiles into five representative weeks. Each representative
week is assigned to a weight, w,
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Network flow -
Pipeline versus Optimal Power Flow

« Bubbles and Pipes Given each line [ € L, the time intervalt € T

T’.t ;' r

Power flow is only constrained by the line (or
corridor) capacity.

e Optimal Power Flow

Power flow is set as a relationship between

its voltage, resistance, and the phase angle
difference. Phase angle differences are
constrained by the maximum angle.

One zone must be set as a reference - slack bus.
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Power and carbon prices

* If the optimal solution exists for linear
programming, the dual variable of binding
constraints represents the shadow prices.

« Shadow prices give us directly the
marginal worth of an additional unit of any
of the resources, such as power or carbon
prices.

* For example, the dual variable of the
power balance can be interpreted as the
marginal power price.
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Carbon policy and energy share requirements

« Carbon cap-and-trading:

The constraint regulates emission limits for
one or more model zones, and zones can
trade CO2 emissions permits and earn
revenue based on their CO2 allowance.

Zone 3: ot ’ Zone 1
90t CO,

< n
<« »

100t CO, ll‘_
N /

Zone 2:
50t CO,
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 Energy Share Requirement:

This requires that the annual or hourly MWh
generation from a subset of qualifying
renewable or low-carbon generators has to be
higher than a pre-specified percentage of load
from qualifying zones.

Demand

(MWh)

Renewable } > x 9
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It can be expanded to multiple sectors - DOLPHYN

GenX can currently co-optimize
grids with:

« Electricity
Hydrogen

Biofuels

Carbon emissions
Heat*

Other capacity expansion models:

 PyPSA
« Switch Power System
Planning Model

e PowerGenom
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Electricity
4—p H,
Co,

Biomass

Bio-Hydrogen (+CCS)

Bio-Electricity (+CCS) /

Bioenergy Supply Chain

Atmospheric
Co, Direct Air Capture
Liguid Solvent
Solid Sorbent

CO, Geological
Sequestration

/

Carbon Supply Chain

Hydrogen Generation
PEM Electrolyzer
SMR (+CCS)

ATR (+CCS)

Hydrogen Storage A
/_> AG Pressure Tank '

Transport &

4 Gas-to-Power (G2P) 7
Fuel Cell, H, CCGT =

Hydrogen Supply Chain

Electricity Generation
Wind, Solar, Hydro, Nuclear
Geothermal, CCGT (+CCS)

Electricity Storage
Li-ion/Flow battery
Pumped hydro

Power Grid

-
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Let's give it a try!

GenX currently uses a command -line interface, CSV file inputs and outputs, and YAML files
for settings and configuration.

Inputs

Name

policies
Name
resources

[ Demand_data.csv

system >
[ Fuels_data.csv

README.md ) Generators_variability.csv

[
[ |
[
B settings
[ |
0O
0O

Run.jl [9 Network.csv

26 JUMP
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Running HiGHS 1.6.0: Copyright (c) 2023 HiGHS under MIT licence terms

Presolving model

118138 rows, 81183 cols, 467127 nonzeros
110719 rows, 73764 cols, 468669 nonzeros
Presolve : Reductions: rows 110719(-42679); columns 73764(-46375); elements 468669 (-46801)

Solving the presolved LP

IPX model has 110719 rows, 73764 columns and 468669 nonzeros

Input
Number of variables:
Number of free variables:
Number of constraints:

Number of equality constraints:

Number of matrix entries:
Matrix range:
RHS range:
Objective range:
Bounds range:
Preprocessing
Dualized model:
Number of dense columns:
Range of scaling factors:

73764

3696

110719

16605

468669

[4e-07, le+01]
[8e-01, 4e+03]
[le-04, 5e+02]
[2e-03, le+01]

no
15
[5.00e-01, 8.00e+00]

A\

HiGHS

GUROBI

OPTIMIZATION

Outputs

capacity.csv
capacityfactor.csv
charge.csv
ChargingCost.csv
commit.csv
costs.csv

curtail.csv
EMISSIONS. C5v
EnergyRevenue.csy
MetRevenue.csv
nse.csv

POWEF.C5V
power_balance.csv
prices.csv
RegSubsidyRevenue.csv
reliability.csv
shutdown.csv
start.csv

status.cev
storage.csv
storagebal_duals.csv
SubsidyRevenue.csv

time_weights.csv
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