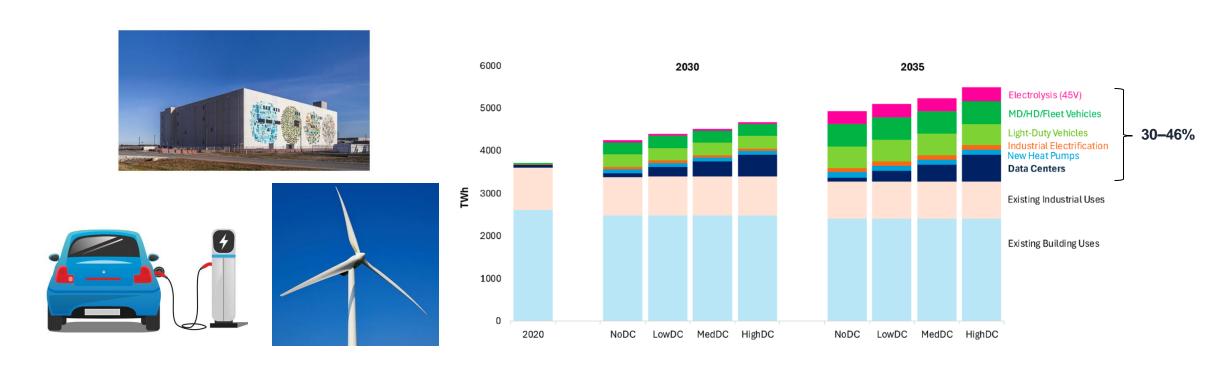
Deep Decarbonization of Energy Systems: Insights using capacity expansion model


Yifu Ding, Postdoc @ MIT Energy Initiative

yifuding@mit.edu

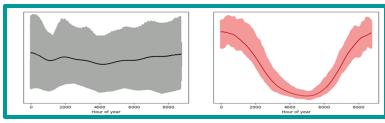
Why capacity expansion model?

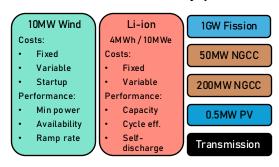
A capacity expansion model determines the optimal investment strategy for expanding energy infrastructure, such as power generation, transmission, and even flexible loads over a planning horizon.

Emerging Electrical Loads and Renewable Generations in Power Grids

The Projected Growth of New Electrical Loads in 2030 and 2035 [1]

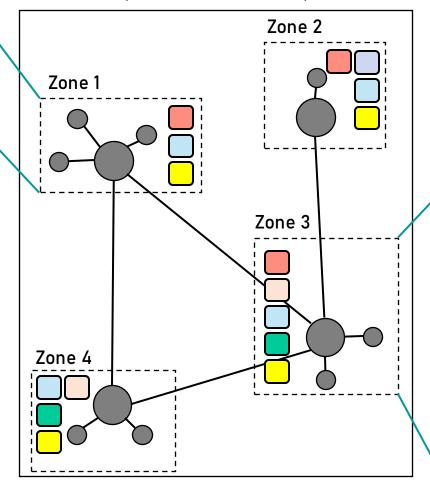
GenX Model


MIT Energy Initiative tool for long-term policy and techno-economic analysis


GenX in a nutshell

Inputs

2. Each zone is defined by an annual electricity (& other) demand timeseries

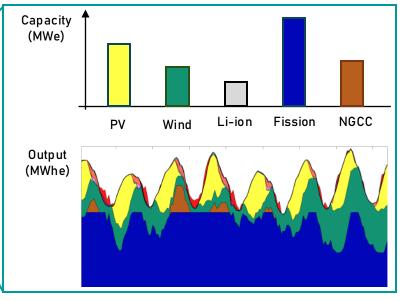


3. Generation, storage and transmission technologies are defined based on economic, performance, & availability parameters

4. Public policies and resource constraints are added per-zone or system-wide

 1. The user defines a transmission network (and local distribution)

Outputs


5. GenX finds the cheapest combination of technologies which meets the demand

Reports system and zone outcomes:

Costs

- Transmission
- Average price
- losses
- Emissions
- ...

6. GenX returns optimal investment and operation decisions for each zone and line

How do capacity expansion models work?

Objective:

Minimize based on planning horizon T and zones Z

Where And How To Invest In Capacity,

Capital costs of generation capacity

How To Dispatch Or Operate That Capacity,

Fixed and variable operation & maintenance costs

 Which Consumer Demand Segments To Serve Or Curtail,

Value of lost loads

 How To Cycle And Commit Thermal Units Subject To Unit Commitment Decisions,

Fuel Cost, start-up or shut-down costs

 And Where And How To Invest In Additional Transmission Network Capacity To Increase Power Transfer Capacity Between Zones.

Network expansion costs

How do capacity expansion models work?

CEMs form a constrained optimization problem:

Group all your decision variables into a vector xMinimize the cost of the system: f(x)subject to a set of equality constraints: g(x) = aand a set of inequality constraints: $h(x) \le b$ $egin{array}{ll} \min 10x + 15y & ext{Objective function (cost)} \\ ext{s.t.} & & ext{Grid Demand} \\ ext{$x+y\geq 10$} & ext{Grid Demand} \\ ext{$55x+70y\leq 1000$} & ext{Construction constraint} \\ ext{$40x+5y\leq 200$} & ext{Emissions constraint} \\ ext{$x,y\geq 0$} & ext{Non-negativity constraints} \\ \end{array}$

Many CEMs stick to linear constraints

This means the constraints become a matrix: $Ax \leftarrow c$

This makes the problem easier to solve so allows for much larger models

How do capacity expansion models work?

Let's say we're modelling a systems with 2 zones, 3 possible resources and 10 time steps

x has at least 66 elements: 6 investment variables and 6x10 power-output variables

The objective function, f(x), is the sum of their operating costs:

$$f(x) = \sum_{i=1:6} \left(\left(\$_{inv} + \$_{fix \ O\&M} \right)_i C_i + \sum_{t=1:10} \left(\$_{fuel} + \$_{var \ O\&M} \right)_i Power_{i,t} + \cdots \right)$$

The constraints look like:

Capacity constraints: $Power_{1,1} \leq C_1$, $Power_{1,2} \leq C_1$, ...

Power flow constraints: $\sum_{i \text{ in zone 1}} Power_{i,1} - Demand_1 - (net \text{ transmission out})_1 = 0$

Storage: $(Stored\ energy)_{i,2} = (Stored\ energy)_{i,1} - (losses)_{i,1} + (net\ charging)_{i,1}$

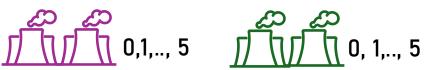
Emissions: $\sum_{i=1:6} \sum_{t=1:10} Power_{i,t}(Emissions\ intensity)_i \leq (emission\ limit)$

Functions in GenX

```
th □ ..
! genx_settings.yml U X
Tutorials > example_systems > 1_three_zones > settings > ! genx_settings.yml
       DverwriteResults: 0 # Overwrite existing results in output folder or create a new one; 0 = create new folder; 1 = overwrite existing
      PrintModel: 0 # Write the model formulation as an output; 0 = active; 1 = not active
      NetworkExpansion: 1 # Transmission network expansion1; 0 = not active; 1 = active systemwide
      Trans_Loss_Segments: 1 # Number of segments used in piecewise linear approximation of transmission losses; 1 = linear, >2 = piecewis
      EnergyShareRequirement: 0 # Minimum qualifying renewables penetration; 0 = not active; 1 = active systemwide
      CapacityReserveMargin: 0 # Number of capacity reserve margin constraints; 0 = not active; 1 = active systemwide
      CO2Cap: 2 # CO2 emissions cap; 0 = not active (no CO2 emission limit); 1 = mass-based emission limit constraint; 2 = demand + rate-b
      StorageLosses: 1 # Energy Share Requirement and CO2 constraints account for energy lost; 0 = not active (DO NOT account for energy
      MinCapReg: 1 # Activate minimum technology carveout constraints; 0 = not active; 1 = active
      MaxCapReq: 0 # Activate maximum technology carveout constraints; 0 = not active; 1 = active
      ParameterScale: 1 # Turn on parameter scaling wherein demand, capacity and power variables are defined in GW rather than MW. 0 = not
 11
      WriteShadowPrices: 1 # Write shadow prices of LP or relaxed MILP; 0 = not active; 1 = active
 12
 13
      UCommit: 2 # Unit committment of thermal power plants; 0 = not active; 1 = active using integer clestering; 2 = active using lineari
      TimeDomainReduction: 1 # Time domain reduce (i.e. cluster) inputs based on Demand_data.csv, Generators_variability.csv, and Fuels_da
      ModelingToGenerateAlternatives: 0 # Modeling to generate alternatives; 0 = not active; 1 = active. Note: produces a single solution
      ModelingtoGenerateAlternativeSlack: 0.1 # Slack value as a fraction of least-cost objective in budget constraint used for evaluating
      ModelingToGenerateAlternativeIterations: 3 # Number of MGA iterations with maximization and minimization objective
      MultiStage: 0 # Multi-stage modeling; 0 if single-stage; 1 if multi-stage.
      MethodofMorris: 0 #Flag for turning on the Method of Morris analysis
```

Model Constraints for thermal units-Linear Programming vs. Unit Commitment

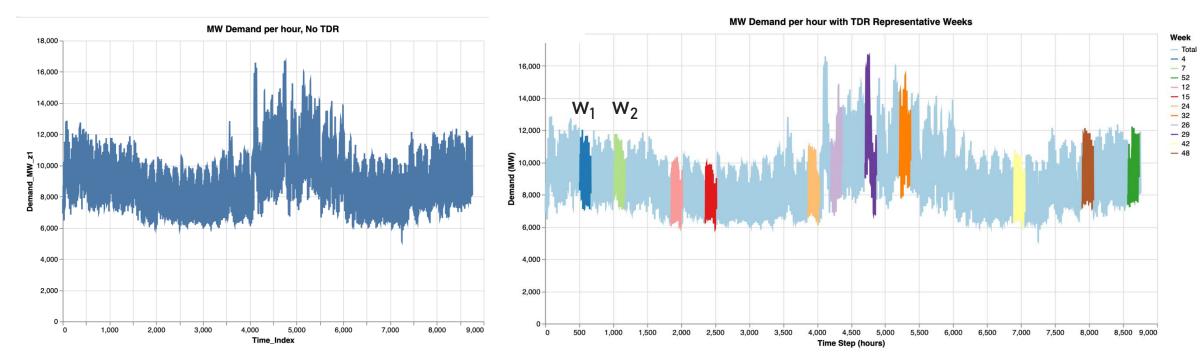
 Many existing models establish each plant's unit commitment and operational constraints (start-up, shut-down, dispatch output, etc.).


• <u>Clustering approach</u>: The same type of power plants are grouped into clusters, standardizing their technical characteristics.

• <u>Linear relaxation</u>: The same type of power plants are grouped into clusters, standardizing their technical characteristics.

Large set of binary and linear constraints, increased computation time.

➤ Binary decision variables (e.g., plant operation/ plant shut-down) are replaced with positive integer variables.



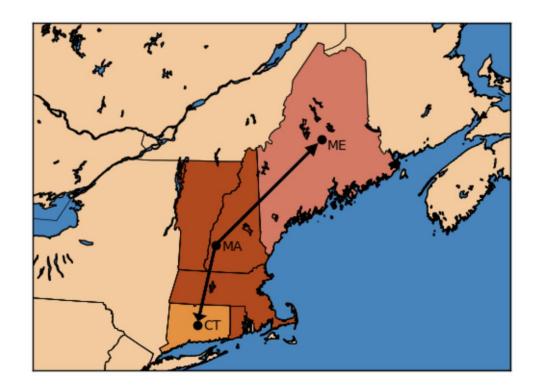
Positive integer variables are relaxed to linear variables.

Clustering for representative weeks -An effective way to reduce computation costs

An example is clustering annual demand profiles into five representative weeks. Each representative week is assigned to a weight, w_n

Network flow – Pipeline versus Optimal Power Flow

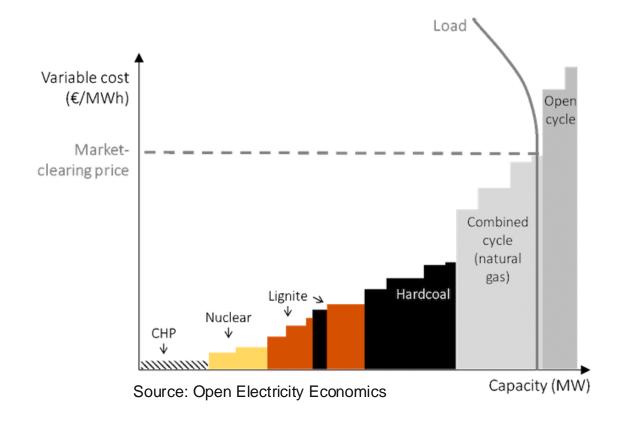
Bubbles and Pipes


Power flow is only constrained by the line (or corridor) capacity.

Optimal Power Flow

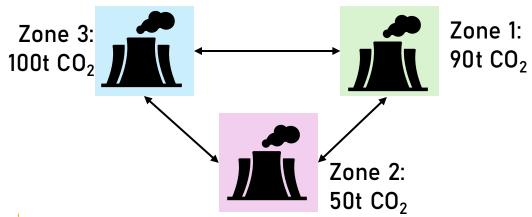
Power flow is set as a relationship between its voltage, resistance, and the phase angle difference. Phase angle differences are constrained by the maximum angle.

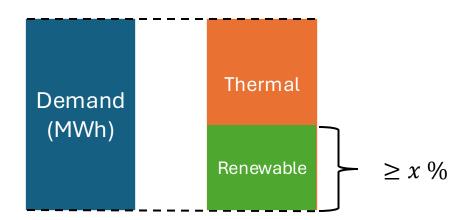
One zone must be set as a reference - slack bus.


Given each line $l \in L$, the time interval $t \in T$

Power and carbon prices

- If the optimal solution exists for linear programming, the dual variable of binding constraints represents the shadow prices.
- Shadow prices give us directly the marginal worth of an additional unit of any of the resources, such as power or carbon prices.
- For example, the dual variable of the power balance can be interpreted as the marginal power price.

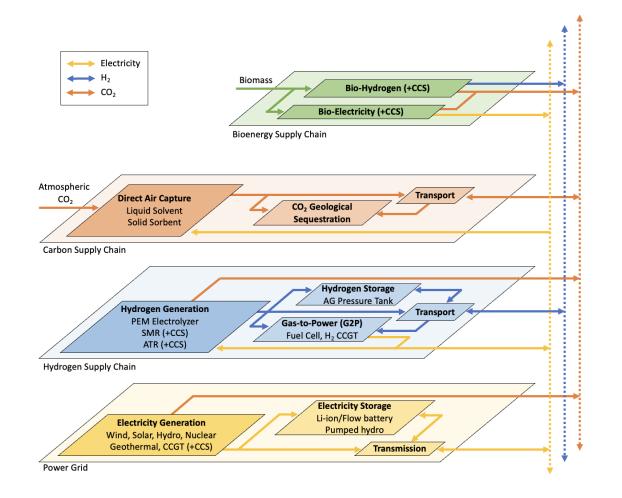

Carbon policy and energy share requirements


Carbon cap-and-trading:

The constraint regulates emission limits for one or more model zones, and zones can trade CO2 emissions permits and earn revenue based on their CO2 allowance.

• Energy Share Requirement:

This requires that the annual or hourly MWh generation from a subset of qualifying renewable or low-carbon generators has to be higher than a pre-specified percentage of load from qualifying zones.

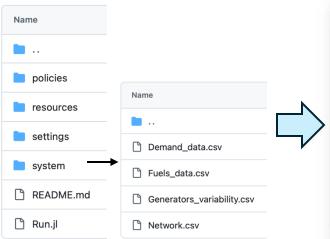

It can be expanded to multiple sectors - DOLPHYN

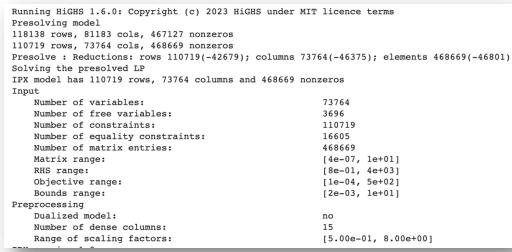
GenX can currently co-optimize grids with:

- Electricity
- Hydrogen
- Biofuels
- Carbon emissions
- Heat*

Other capacity expansion models:

- PyPSA
- Switch Power System Planning Model
- PowerGenome





Let's give it a try!

GenX currently uses a command -line interface, CSV file inputs and outputs, and YAML files for settings and configuration.

Inputs

CLI

Outputs

capacity.csv capacityfactor.csv charge.csv ChargingCost.csv commit.csv costs.csv curtail.csv emissions.csv EnergyRevenue.csv ■ NetRevenue.csv nse.csv power.csv is power_balance.csv prices.csv RegSubsidyRevenue.csv reliability.csv shutdown.csv start.csv status.csv storage.csv storagebal_duals.csv SubsidyRevenue.csv time_weights.csv

