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Distributionally Robust Joint Chance-Constrained
Optimization for Networked Microgrids Considering
Contingencies and Renewable Uncertainty
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Abstract—In light of a reliable and resilient power system
under extreme weather and natural disasters, networked
microgrids integrating local renewable resources have been
adopted extensively to supply demands when the main utility
experiences blackouts. However, the stochastic nature of renew-
ables and unpredictable contingencies are difficult to address with
the deterministic energy management framework. The paper
proposes a comprehensive distributionally robust joint chance-
constrained (DR-JCC) framework that incorporates microgrid
island, power flow, distributed batteries and voltage control
constraints. All chance constraints are solved jointly and each
one is assigned to an optimized violation rate. To highlight,
the JCC problem with the optimized violation rates has been
recognized as NP-hard and challenging to solve. This paper pro-
poses a novel evolutionary algorithm that successfully solves this
problem and reduces the solution conservativeness (i.e., opera-
tion cost) by around 50% compared with the baseline Bonferroni
Approximation. We construct three data-driven ambiguity sets
to model uncertain solar forecast error distributions. The solu-
tion is thus robust for any distribution in sets with the shared
moments and shape assumptions. The proposed method is vali-
dated by robustness tests based on these sets and firmly secures
the solution robustness.

Index Terms—Distributionally robust optimization,
chance constraints, data-driven ambiguity set, reliability.
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NOMENCLATURE
Set and Index

Tt Set, index of timesteps
B, b Set, index of buses
S, s Set, index of distributed assets (i.e., storages,

PV panels, loads).
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Parameters and Variables

my Cost factor of grid power

my Cost factor of solar generation curtailment

my Cost factor of load curtailment

my Cost factor of droop control provision

my Battery degradation costs

Np Number of network buses

Ni. Number of lines

Ng Number of distributed batteries

Np Number of loads

Npy Number of solar PV panels

N; Maximum number of evolution iterations

N, Number of single chance constraints

Ny Number of forecast error samples

N, Number of individuals in one generation

Ndis, Nch, ~ Battery discharging / charging efficiency

v,V Maximum / minimum bus voltage

v Voltage magnitude of buses

SoC, SoC Maximum / minimum state of charge (SoC)

Pe, pd Maximum discharging / charging power

P4, p¢ Battery discharging / charging power

P! Demands at each bus

P’ Supplied loads at each bus

Pe Critical loads at each bus

Es Battery energy capacity

Hpy Mean vector of solar forecast errors

Xpy Covariance matrix of solar forecast errors

€, € Upper / lower bounds of violation rates of
chance constraints

€ Violation rate of single chance constraints

€ Violation rate of joint chance constraints

d’ Droop provision coefficients

PPy Forecast solar power at each bus

pr Consumed solar power at each bus

PPY Solar power forecast errors

P Net injected power at each bus

P8 Imported grid power

R'P Upward droop provision from batteries

E’ SoC of distributed batteries

r Ratio to measure the solution convergence

Tthr Threshold ratio for the termination condition

V,, I, Voltage / current operation point vector

Y Network admittance
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C Sparse matrices to map the distributed assets
P Individuals (population) in one generation.

I. INTRODUCTION

HE RELIABILITY of the power system under the impact

of increasing renewable penetration and extreme weather
conditions is a rising concern. In the developed world, the
decreasing number of dispatchable fossil-fuel power plants
and reduced system inertia render the power system more
vulnerable to natural disasters [1]. Recent examples include
the rolling blackouts across California due to the wildfire [2]
and disastrous power outages in Texas due to the extremely
cold weather [3]. In the developing world, increasing electric-
ity demand and aging infrastructure result in frequent power
outages. In sub-Saharan African countries, the outage time of
public utility is commonly around 10%, and even reaches 50%
in some instances [4].

To tackle utility failures and power cuts, microgrids aggre-
gate local renewable energy resources and loads in a small
network, and operate flexibly with or without the grid connec-
tion, thanks to modern inverter-based design [5]. Microgrids
can thus supply loads when the grid experiences scheduled
under-frequency load shedding (UFLS) [6] or unpredictable
power cuts. This islanding capability is incorporated into the
power scheduling of microgrids [7], [8]. Smart load shedding
is also employed to mitigate power imbalances in microgrids.
For example, [9], [10] model users’ utility functions using dif-
ferent appliances so that flexible loads can be shifted efficiently
for peak shaving in distributed power networks.

On the other hand, intermittent renewable resources such
as solar power pose challenges to short-term power system
operations. The imperfect forecast brings uncertainty, which
could result in network constraint violations and high
power losses [11]. Stochastic and robust optimization have
been proposed to address the uncertainty. While robust
optimization based on the worst-case scenario leads to an
overly-conservative and cost-prohibitive solution, the chance-
constrained (CC) formulation, as one of the predominant
stochastic approaches, can directly control the system relia-
bility to a predefined level and decide the optimal cost. The
CC formulation of the optimal power flow (OPF) was first
proposed in [12], incorporating a series of single network
chance constraints (CCs) pertaining to voltage and power
limits.

The most intuitive way to solve the CC problem is the
scenario-based approach. As the exact solution of a CC
problem is unattainable, this approach solves a great number of
problem scenarios randomly drawn from the uncertainty dis-
tribution. To secure the estimation confidence level 1 — 8, the
number of random samples should be at least %(ln% + n),
given the violation rate ¢ and the dimension of decision
variables n [13].

A more effective alternative is distributionally robust
optimization (DRO). This approach constructs a set based on
historical data - termed the ambiguity set - including all pos-
sible uncertainty distributions. The formulation thus ensures
constraints are satisfied for any distribution in the ambiguity
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set built upon distribution moments and shape information.
The problem can be solved by being recast into tractable
formulations, including linear programming (LP), semidefi-
nite programming (SDP) and second-order conic programming
(SOCP) depending on the degree of approximation [14].
However, defining an ambiguity set to characterize uncertain
distributions is non-trivial, as one needs to decide the trade-
off between solution robustness and conservativeness, while
considering the mathematical tractability [15]. Compared with
early works using the first two moments (i.e., mean and
variance) such as [16], recent works utilize the high-order
moments (e.g., skewness [17]), structural properties (e.g., uni-
modal [18] and symmetric [19]) to set tighter bounds. Another
kind of method is the moment-free method. Ref. [20] con-
structs a ball space where possible distributions are centred at
the reference distribution based on the training samples, and
the ball radius is defined by Wasserstein-based distance met-
rics. However, such an approach is highly data-intensive and
its performance is substantially influenced by the volume of
data available [21].

All aforementioned literature [16], [17], [19]-[23] adopt the
single CC formulation, in which each constraint is considered
as an independent event with the pre-defined violation rate.
However, in most power system applications, the JCC formu-
lation is desired, which means that all constraints should be
satisfied simultaneously and use one whole-system reliability
metric. For example, a distribution feeder is considered to be
reliable if and only if all the constraints such as bus voltage
limits, power balance are met simultaneously.

However, solving the JCC problem is notoriously difficult
since its DRO reformulation generally results in intractable
problems [24]. Only a few papers attempted to solve the JCC
problems using either the scenario-based or approximation-
based methods. The scenario-based method, following the
aforementioned principles, solves possible scenarios from his-
torical samples for the JCC problem. Ref. [25] first proposed
the JCC-OPF formulation for the transmission network with
high wind power penetration. A droop-type function, termed
the distribution vector, was introduced to control generators
concerning wind power forecast errors [25], [26]. These prob-
lems were solved in a great number of wind power forecast
scenarios. Similar works include [27]-[29] for power networks
integrating flexible loads or thermal storages. In general, the
scenario-based approach offers a fairly accurate solution given
a large volume of samples, but its scalability heavily relies on
statistical techniques, such as sample average estimation, to
ease the computation burden [30].

The approximation-based method is decomposing an
intractable JCC problem into a series of tractable SCCs,
then approximating individual violation rates. The simplest
approximation method, termed the Bonferroni Approximation,
assumes that all individual violation rates are the same and
equal to the joint violation rate divided by the number of indi-
vidual constraints, proposed first in [31]. This approximation
has an extremely conservative assumption that neglects the
intersections of constraints and treats all constraints equally.
In this case, the solution conservativeness increases with the
number of individual chance constraints [32]. To reduce the
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solution conservativeness, [33] identifies all intersections of
constraints using machine learning classification and obtained
around 5% result improvement, compared to the Bonferroni
Approximation as the baseline. Refs. [34], [35] approximate
the JCC to conditional value-at-risk (CVaR) constraints and
introduce a scaling factor to control the tightness of the
approximation. The improvement benchmarked against the
Bonferroni Approximation is around 8-12%. However, none of
the previous papers try to allocate the optimized violation rates
for each constraint. Ref. [33] concludes these optimal violation
rates are challenging to find. Furthermore, [36] theoretically
proves that a JCC problem with the optimized individual vio-
lation rates, termed the optimized Bonferroni Approximation,
is a strongly NP-hard problem.

This paper makes the following contributions which
together address the aforementioned challenges:

1) A novel evolutionary algorithm is proposed to solve the
JCC problem with optimized individual violation rates, which
is an NP-hard problem and challenging to solve. Our method
shows around a 50% reduction in the solution conservative-
ness (i.e., operation cost) benchmarked against the Bonferroni
Approximation. This performance is the best to date compared
to other approximation-based methods for the JCC problem.
Moreover, these optimized violation rates are interpretable,
accurately reflect the sensitivities of corresponding constraints
to the operation cost.

2) The proposed JCC algorithm is tested on three data-
driven ambiguity sets, namely, symmetrical, unimodal and
symmetrical & unimodal sets. These ambiguity sets are cre-
ated and constructed using the empirical solar power forecast
errors from a machine learning model to capture accurate sta-
tistical characteristics of uncertainty distributions in each time
interval.

3) This DR-JCC energy management framework for the net-
worked microgrid incorporates CCs pertaining to the power
flow, bus voltage, energy storage power and energy limits.
We run the power flow simulations under three uncertain
distribution assumptions (i.e., ambiguity sets) to observe the
no-violation cases. Only the proposed method can schedule
the system to closely meet the reliability requirements, while
the SCC and the benchmark case give either unreliable or
overly-conservative results.

The rest of the paper is organized as follows. Section II
presents the centralized OPF formulation for a networked
DC microgrid. Section III demonstrates the essential steps to
reformulate the model into a DR-JCC framework with the
optimized individual violation rates, and then we propose a
novel evolutionary algorithm to solve the intractable problem.
Section IV presents a statistical analysis of empirical solar
forecast errors and the rationale behind the three data-driven
ambiguity sets. Section V presents a case study to evaluate the
model performance and test the solution robustness. Finally,
Section VI concludes the paper.

II. CENTRALIZED OPF FOR NETWORKED MICROGRIDS

Fig. 1 shows an example of a networked DC microgrid in
a rural area. The microgrid has a main busbar connected to
multiple households and the main grid via an inverter. The grid
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Fig. 1. Networked DC microgrid in the rural area [37].

often experiences unpredictable power cuts. Each household
at the end point has a bidirectional multi-port DC-DC con-
verter connected to local PV panels, distributed energy storage
(ES), and appliances. The centralized OPF is optimized in the
receding horizon with 15-min time intervals and a one-day
window. The formulation considers both the grid-connected
and island mode simultaneously, allowing off-grid operation at
any time step. The subsequent sections present the centralized
OPF formulation with predetermined forecast errors.

1) Preliminaries: As in Fig. 1, we consider a networked
microgrid with Np buses and Ny lines. The network buses
are indexed by b € B, and the network admittance matrix
is denoted as Y € RV8*Ns_ Distributed assets are located at
different buses including energy storage, solar power gener-
ation, flexible and inflexible loads, indexed by s € S. Bold
letters P; := {P1 P2y, ..., Pn;} represent decision variable
vectors across distributed assets at time ¢ € 7. The positions
of those distributed assets in the network are mapped by sparse
matrices C”¥ € RVs*Npv 5 ¢ RVN8*Ns ! ¢ RVN8XND | The
multi-period centralized DC OPF has the time interval Af.
For all constraints, V¢ € 7 and Vb € B hold unless otherwise
specified.

2) Objective function: The objective function is formulated,

T Ng
T = Ay ym(PE) +m Y (RY)?
=0 s=0
Ney N2 Np SN2
o S (P = P2 ) SO (PL P
s=0 s=0

Ng
+ma Y (PL,+ ) (1a)
s=0

The objective function includes five terms, namely, utility
tariff, droop control provision cost, solar power curtailment
penalty, load shedding penalty and battery degradation cost.
Except for battery degradation costs, all costs are modeled as
a quadratic function. Cost factors mg; and m; are associated
with the solar power self-consumption and users’ utility, as
detailed in Section V.

2) SoC battery droop control: Distributed ES in the network
has two functions: shifting solar energy in time and providing
P-V droop control to regulate bus voltages within the range.
For the voltage regulation function, distributed ES reserves
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energy to address positive solar power forecast errors and
provide upward voltage regulation. When solar power is over-
estimated, it leads to a power imbalance and low bus voltages.
Then each ES will release the reserved energy according to
its droop coefficient and bus voltage deviation, until a new
power balance is achieved. When the solar power is under-
estimated, the surplus solar power will be curtailed considering
the curtailment penalty in (1a).

Ng
Y di,=1 vdi, €0,1] (1b)

s=0

Npy

RY, > d, ZP"” (1c)
¢+ R < Pd (1d)
PL—RﬁzO (le)
SoC < Ej , — R} At (1f)
E}, < SoC (1g)
E{ o = E, ”At + P menAt (1h)

At any timestep ¢, all distributed ES in the network should
deliver the P-V droop provision to address exactly the total
amount of solar power forecast errors (1b), while each dis-
tributed ES is coordinated to deliver a fraction known as
the droop coefficient d, in (Ic). Droop provision is con-
strained by the battery power output limits (1d) - (1e), energy
constraint (1f) - (1g) and energy balance considering the
round-trip efficiency (1h).

3) Power flow and balance: We categorize users’ loads into
flexible and inflexible loads, and flexible loads can be curtailed
during a blackout.

4

P, =P, (1i)
0<P <P (1)
@ﬂﬂVﬂJ@fwzo (1K)
Npy Np ,
Pé o+ ZP”” n Z( ¢, P;t) =Y P,
s=0

At the grld-connected mode, the system cannot curtail any
load (1i) but the solar power curtailment is allowed (1j). All
stacked decision variables in (1k) should be greater than zero.
The power balance is guaranteed by (11).

Considering distributed ES with the droop provision, local
solar power generations with forecast errors and loads, the
injected power at each bus in the network is formulated as,

znj Cng—I-C (Pd Pg +R;up)
+ CI’V(Pi’V _ Pﬁ’v) —Clp/ (1m)

The voltage at each bus depends on the power injected at
that bus and power flow between all neighboring buses,

P = diag(v)I = diag(v)Yv (1n)
P = diag(V,)Yv + diag(IL,)(v — V,) (1o)
VSVEV (Ip)
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Fig. 2. Schematic diagram for formulating and solving the JCC model for
the networked microgrid.

To deal with the non-convex constraint (In), [38] uses
Taylor series expansion for linearization and validates its high
fidelity. Based on this approach, constraint (1n) is linearized
around the operating point (V,, I,) as (lo). Bus voltages are
regulated within a certain range to ensure power quality (1p).

4) Island mode: Designed to operate during a blackout,
the microgrid can island at any timestep. The grid-connected
and islanding schedules of the microgrid are solved simulta-
neously, as two scenarios of one problem. The optimization
problem in the islanding scenario is identical to the grid-
connected mode, except for the constraints pertaining to load
curtailment and utility supply.

Pf=0  teltyty+H]
! G /
Pg,t =P, <Py, t € [t,, 1, + HI.

(19)
(Ir)

When the utility power is available, battery SoC of these
two scenarios should be the same. When the blackout hap-
pens (1q) during [#,, t, + H], the microgrid is only required
to supply inflexible loads (Ir) during islanding, and the bat-
tery control reference follows the optimization result of the
islanding scenario.

III. DR-JCC FRAMEWORK WITH THE OPTIMIZED
INDIVIDUAL VIOLATION RATES

The centralized OPF formulation in Section III has an
underlying assumption of predetermined solar power forecast
errors, P’;V,, while these errors follow an uncertain distribution
in practice. We thus introduce the DR-JCC formulation to inte-
grate uncertainty and secure solution robustness for uncertainty
distributions. Introducing the JCC formulation is essential
because the microgrid is reliable if and only if all individual
CCs are satisfied simultaneously. As shown in Fig. 2, the pro-
cess for formulating and solving the DR-JCC problem includes
four steps.

As shown in Fig. 2, firstly, the solar forecast error samples
are collected. We then summarize the family of error distribu-
tions and build ambiguity sets. Given the shape and moment
assumptions of ambiguity sets, the DR-JCC problem is formu-
lated considering the joint risk of the battery power capacity,
bus voltage and network violation. The problem is solved
by decomposing and recasting into the SOCP formulation.
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However, the JCC with the optimized violation rates is an
intractable problem. Thus, we propose a novel evolutionary
algorithm to solve this problem.

A. DR-JCC Formulation

We first present the DR-JCC formulation considering uncer-
tain solar power forecast error distributions. All six con-

straints (1c) - (1f) and (1p) involving forecast errors P?V, are
reformulated in the DR-JCC fashion, while the other con-
straints (1b), (1g) - (1o), (1q) and (1r) remain the same. The
new problem formulation is given by,

min Ep[7(x)]
s.t. (1b), (1g)-(10), (1q), (1r)

Ne
inf P(ﬂ(Ai(x)c < bi(x))> zl-¢ @
i=0

PeP(u,0)

where

Ai(0)¢ < bi(x) =

Npy
{ i,y Py <R, (3a)
i=0
P!+ R < Pl (3b)
R < P, (3¢)
E}, — R At > SoC (3d)
v>y (3e)
v < V} (31)

The letter x represents the decision variable vector (i.e.,
droop coefficient, grid power and distributed asset power out-
puts), and ¢ represents the uncertainty variable vector follow-
ing the distribution P (i.e., solar power forecast error PPY). N,
is the number of individual constraints included, while A;(x)
and b;(x) are affine functions about the decision variables. The
DR-JCC inequality (2) means that given all distributions in the
ambiguity set P built upon moments u, o, the violation rate
of the JCC is less than ¢; even for the worst-case distribution.
This JCC problem can be decomposed into the SCC problem
with individual violation rates. Constraint (2) is transformed to
constraint (4) based on the set operation properties of supre-
mum and infimum. Then the JCC (4) can be decomposed into
N, single chance constraints based on Boole’s inequality [39].

Ne

sup P(U(Axx)c > @»(x))) <¢ &)
PeP(i,0) i—0
Ne

= sup Y PAWE > b)) < ¢ )
PeP(i,0) i=0

Thus, given the violation rate of the single CC ¢;, the
following inequality holds.

N,
261‘ < €j. (6)
i=0
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B. Ambiguity Set Construction and SOCP Formulation

The solar forecast error distributions typically show strong
unimodality or symmetry [40]. This paper uses moments and
distribution structure assumptions to construct ambiguity sets.
For a time interval ¢ € 7, we have Ny error samples ¢, ;. We
can compute the empirical mean w, and covariance o; of the
error distribution in this time interval,

1 Ny
M = N, g Cn,t Q)
R
azz = N.—1 Z(gn,t - Mz)(g’l” - '“’)T ®)
$ n=0

Given the solar power correlation between two buses a, b at
time ¢ denoted as y, p,, the mean vector u,, and covariance
matrix X, of forecast errors in the network are,

Hpy = [MO,lv R l/«b,t] ©
2 .
o if a=>b
S — a,t . VS c S c RNBXNB
a,b { Ya,b,t0a,t0b,t if a 7,5 b ( a,b )
(10)
Zpy =S = itpuity, (11)

Depending on the certainty of the computed moments, one
can build the ambiguity set and recast the CC model into
either the SOCP or SDP formulation. The former considers
no estimation errors for the computed moments, while the lat-
ter considers the confidence level of the moment estimation.
A detailed demonstration can be consulted in [14]. In this
paper, we prepare a sufficient number of samples and adopt
the SOCP formulation assuming the computed moments are
exactly true moments of unknown distributions. We construct
three ambiguity sets as D}, D? and Dg. We drop indexes ¢, pv
for conciseness.

Ambiguity Set 1 (Unimodal, Centred at the Mean and Mode
Zero):

1 o Elc]l =1 E[¢ - w?]=0’
Dg._{]P’eP : Micl= =0 }
where P* denotes all unimodal distributions on R”, and M[¢]
is the mode of distributions.
Ambiguity Set 2 (Symmetric, Centred at Mean Zero):

El¢] =, E[(¢ — w?] = 02}

D = PeP: 12

¢ { PI¢] = P[] =0 (12)

Ambiguity Set 3 (Unimodal and Symmetric, Centred at
Mean and Mode Zero):

3. 1 2
D} = {IP’ eDln DC} (13)
Based on the proof in [41], a single DR-CC in (5) can be

recast into a SOCP constraint given by,

Me)| B2 < bi) = nTA) (14)

where A(e;) depends on the specific ambiguity set. For D},
Dg and D?, their functions A (¢;), A2(€;) and A3(e;) are,

2 /1 1
r(e) =—=.[— Ve € 0,§

3V e (15)
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1 1
Aa(€) = 2—61 Ve; € <0, E) (16)
M(€)) == i Ve; (0 1) 17
2(€;) = 9€i € € y 6

Equations (15) - (16) are proven in [42] and [43] based on
Gauss’s inequality and Chebyshev’s inequality. Equation (17)
is proven in [44].

C. Approximation of Individual Violation Rates

Since we only know a joint violation rate ¢;, single vio-
lation rates ¢€; need to be computed. We choose Bonferroni
Approximation as the baseline case. It assumes all individual
violation rates to be equal and the sum of individual violation
rates is the exact joint violation rate.

€= (18)
N

Nevertheless, the Bonferroni Approximation leads to a very
conservative solution, as this approximation assumes all con-
straints have the same chance to be violated. We therefore
propose an improved method using the Optimized Bonferroni
Approximation. It considers the individual violation rate ¢;
as a variable rather than a fixed priori, which is solved
simultaneously with the original optimization problem [36].

Hi= —Cd + O (19)
G = diag(V,)Y + diag(,) (20)

e |@1S)5| < RY =l 1] e2))
aen |1z ]2 < PPl T 1d (22)
aen |1z ]2 < Pl 1d (23)
Men| —1ars)) | < B} —80C — (—u], 1A} (24)
re| e ras)? L =v-G! [diag(Io)VO P } (25)
re|6 2 ’2 < v+ G_l{diag(IO)Vo + P } (26)

Based on the Optimized Bonferroni Approximation and the
reformulation in (14) - (17), the DR-JCC inequality (2) con-
sisting of six individual CCs (3a) - (3f) is recast into individual
SOCP constraints (21) - (26), with a new variable ¢; and con-
straint (6). 1 represents the unit vector with the dimension
of buses, and /L;VJI thus is the sum of total forecast error
across all buses. However, introducing the variable €; destroys
the convexity of this problem. One can observe that each con-
straint has a multiplication of variables. The problem has been
proven as strongly NP-hard [36].

D. Evolutionary Algorithm for the JCC Problem

To tackle the aforementioned NP-hard problem, we propose
an evolutionary algorithm to approximate the solution of the
intractable JCC problem, including the optimized individual
violation rate for each CC and total operation cost. In the sub-
field of meta-heuristic optimization, the evolutionary algorithm
is a bio-inspired algorithm analogous to the natural evolution
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Algorithm 1: Population-Based Evolutionary Algorithm

Initialise the population with random individual solutions;
Evaluate each individual solution;
while termination condition is not satisfied do

Perform competitive selection;

Apply pair, breed and mutation procedures;

Evaluate the new pool of individual solutions;

Apply replacement to form the new population;

Find current best solution;
end

Output overall best solution;

process [45]. The essence of an evolutionary approach to solve
a problem is to equate possible solutions to individuals in a
population, and to introduce a notion of fitness on the basis
of solution quality [46].

Algorithm 1 provides the pseudo-code of the proposed
population-based evolutionary algorithm. First, a group of N,
individuals P as the first-generation population is created,

P:=[ep,...,&] Vie[0,N], Ve € [e, €] (27)

Each individual P has six parameters, which are the opti-
mized variables for each CC violation rate (27). The sum of
individuals’ parameters should satisfy Boole’s inequality (6),
thus the upper bound of parameters is the joint violation rate
€j. We use the voltage violation rate of a feeder in reality (e.g.,
0.1% [47]) to set the lower bound of parameters.

F(P) =Ep[T (P, x)] (28)

Each individual is evaluated by the fitness value, defined as
the objective function value of the JCC problem (28), where
x is the decision variable in the original optimization problem
to be solved together. The evolution of the population is con-
ducted iteratively based on competitive selection. For each
iteration, only the first half of individuals with lower fitness
values are selected as the elite for the next generation.

em 4 gen ‘
€ = % Ve € Py, Ve € P, (29)
¢ = ¢+ max{6,0) 6~N (0, 02> (30)

The elite pairs with each other and generates offspring.
Specifically, the offspring is generated by taking the average
value of parents’ parameters (29). The mutation of offspring
is necessary, otherwise the solution might be trapped into
a local minimum. That is to add a random number drawn
from a normal distribution to six offspring’ parameters (30).
The parameters of the mutated offspring should be normal-
ized, so that the sum is always equal to the joint violation
rate. The mutation only happens when all parents are differ-
ent, otherwise the fitness values over generations are hard to
converge.

The evolutionary iteration will stop until any of these two
termination criteria is reached, the maximum number of iter-
ations (i.e., Njy = 10), and the ratio to measure the solution
convergence, defined as the ratio of the maximum. The average
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value of fitness functions is as below.
max{F(Pp), ..., F(P,)}

— — <
r: N, 1 < rpy

N Lo F(Pu)

The algorithm will stop when the ratio (31) is lower than the
threshold value, 7y,,. Much empirical evidence such as [46],
[48] and [49] shows that if the evolutionary algorithm, as one
of the global optimization methods, is repeated many times
with the random initial guesses in the first generation and still
obtains the same solution, this solution is considered as an
acceptable approximation of the global optimum.

This method can be readily transferable from one problem
to another, as only two parts of the algorithm are problem-
dependent, the initial values of the first generation (i.e., the
initial guess of individual violation rates) and fitness function
(i.e., the objective function). Moreover, one can adjust the con-
vergence ratio (31) of the algorithm to decide the trade-off
between the fidelity of the optimum approximation and the
computation time. However, if a problem has a very small
joint violation rate divided by a great number of chance con-
straints, some of the initial guesses for the optimized violation
rates could result in infeasible solutions. A successful evolu-
tion process would require a large population and significant
computation efforts.

€29

IV. DATA-DRIVEN SOLAR POWER FORECAST

We choose a light gradient boosting machine in [50] to
predict solar power. This paper does not consider the demand
uncertainty since its forecast errors are generally much smaller
than solar power forecast errors for a microgrid with a high
solar self-consumption. The dataset used is two-year 15-min
weather measurements in Gitaru dam, Kenya, including the
solar irradiance, air temperature and wind speed for the
prediction features. We set the prediction horizon to be one
day. The prediction is updated every time interval in the
receding horizon for a whole year.

We calculate solar power forecast errors all over the year,
aggregate them based on time intervals and label the mean and
mode, as in Fig. 3 (a). For each time interval with the daylight,
there are 365 error samples from each day in a year. The
maximum value is around 150% in the early morning when
the solar power is too small (around 1W) to be accurately
predicted. One can also observe several phenomena in Fig. 3.
First, those error distributions in each time interval are highly
symmetric centered at their means. Second, both the mean
and mode are around zero and fairly close except for early
morning and late afternoon when the solar irradiance is very
low. Third, the distribution is unimodal but not necessarily a
normal distribution as shown in Fig. 3 (b).

V. CASE STUDY

The section presents a case study of a networked DC
microgrid in the rural area, Kenya. This microgrid has 10
households connected to the main busbar radially, and each
has local PV panels and 60Wh, 20W home batteries. Their
power outputs are considered to be independent. Households’
load profiles are constructed using the weather data based on
our previous work [37]. Specifically, inflexible (i.e., light) and

2473

(a) The boxplot of 15-min solar power forecast errors
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Fig. 3.  Solar power forecast error distributions in a year (a) the box-
plot of 15-min solar power forecast error (modes and means labeled with
black and green markers) (b) Forecast error distribution at 11:45 am (with
non-parametric kernel density estimation in black dash line and parametric
Gaussian fitting in red solid line).

TABLE I
CASE STUDY PARAMETERS

my  $0.023/(kWh)?  ngis, eh 0.95 Np 6

ms  $1.00/(kWh)? SoC, SoC 0.2, 1 N; 10
me  $0.23/(kWh)?2 Vb, T 0.95, 1.05pu.  7¢nr 2%
mg  $0.27/kWh Riine 8Q/km om 0.1

flexible (i.e., fan and phone charger) loads are considered, and
the utility for using them is modeled as a quadratic function
of power, temperature and solar irradiance based on welfare
economics [9]. The parameter m; is a coefficient of the util-
ity function to reflect users’ comfort to achieve smart load
shedding. For example, the user’s utility when using lights is
inversely proportional to the solar irradiance, meaning that the
more economic utility that users can get from lights during the
low solar irradiance.

The power capacity of PV panels and line length from
main bus to households are drawn from uniform distribu-
tions U1 (20, 40) [W] and U4£,(50, 200) [m]. Table I shows the
model parameters in the first two columns and the evolu-
tionary algorithm parameters in the third column. The model
parameters such as line resistance are from the manufacturer
information [51], and my is set to be large to encour-
age self-consumption. The evolutionary algorithm parameters
are optimized from empirical experiments. For example, we
increase the number of individuals N, by two each time and
observe the diminishing marginal improvements on computa-
tion time and results, until there is no significant improvements
on results. The model framework is built using the CVXPY
package [52] in Python, and run on an Apple iMac with a
processor of 3.1GHz Intel Core i5 and a memory module of
8 GB 2133 MHz LPDDR3.

A. Solving DR-JCC Problem With Evolutionary Algorithm

We first solve the DR-JCC model with different joint
violation rates using the proposed evolutionary algorithm,
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Fig. 4. Computation processes for DR-JCC under three joint violation rates.

TABLE I
SUMMARY OF RESULTS AND COMPUTATION TIMES

Joint vio. rates 0.05 0.02 0.01
Methods BL. PPSD. BL. PPSD. BL. PPSD.
€1 0.023 0.008 0.003
€ 0.0083 0.022  0.0033 0.008 0.0016  0.003
€3 — €6 0.001 0.001 0.001
Time (s) 11.02  464.02 11.69  351.82 12.55 269.14
Obj. func. ($) 8.54 3.54 21.54 8.54 30.86 21.06

BL.: Baseline; PPSD.: Proposed

and compare results with the baseline, the Bonferroni
Approximation. In each experiment with one joint violation
rate, we run the evolutionary algorithm for 10 times and the
solutions converge to the same optimum. Those solutions are
thus considered as an acceptable approximation of the global
optimum.

The computation processes for three joint violation rates
(i.e., 0.05, 0.02, 0.01) with the unimodal ambiguity set Dé are
shown in Fig. 4. First, in the higher system reliability (i.e.,
1 — ¢) cases, solutions converge faster. This is because the
numerical range of individuals’ parameters to explore becomes
smaller. Second, the substantial reduction of the objective
function is often achieved in the first two or three iterations.
This means one can decide the trade-off between compu-
tation time and solution conservativeness by changing the
termination condition such as the ratio ry,;.

Detailed results and computation times are listed in Table II.
Significant cost reductions are achieved in all runs compared
with the baseline method. For three cases, the reduction is
58.50%, 60.35% and 31.75% respectively. Parameters €] - €¢
are the optimized individual violation rates of chance con-
straints (21) - (26). These constraints are the voltage droop
regulation, battery power discharging and charging limits, bat-
tery energy limit, voltage upper and lower regulations. Among
all six violation rates, parameters €; and €, are optimized to
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(a) System power balance
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Fig. 5. (a) System power balance, (b) solar power curtailment, (c) bus
voltages when €; = 0.01 and (d) batteries’ power outputs when €; = 0.01 in
the DR-JCC framework. The average values are plotted in blue thick lines in
(c) and (d) (with 50% opacity to show individual values).

have the higher values, while parameters €3 - €4 are optimized
to have the lower values (i.e., 0.001). To check how these
parameters change with the power flow conditions, we change
the line resistance Ry, from 8 to 12 Q/km and repeat exper-
iments. The operation cost slightly increases but the value of
parameters remains unchanged.

The results indicate the first two constraints are the most
critical to the operation costs. They are droop regulation and
battery discharging power limit. This means the operation cost
is mainly determined by the droop provision and solar power
uncertainty, as we set the high value for cost coefficients for
energy reserve and solar curtailment. On the other hand, tight-
ening the last four constraints, battery power charging limit,
bus voltage and battery energy limits will not increase the cost
significantly, even with a high line resistance. This is because
the objective function does not include the monetary term for
power loss pertaining to bus voltages.

B. DR-JCC Framework Performance

As this model framework aims to address renewable uncer-
tainty in microgrids and tackle utility contingencies, we
conduct simulations with a progressively smaller joint vio-
lation rate ranging from 0.2 to 0.01. The utility blackout is
simulated with a duration ranging from one hour to a day.

Fig. 5 showcases how the microgrid system addresses solar
generation uncertainty under different joint violation rates ¢;,
including (a) overall power flow, (b) solar power curtailment,
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Fig. 6. (a) System power balance, (b) load curtailments, (c) one household

load supply and (d) one household battery power outputs when there is a
blackout. In (b), (c) and (d), two scenarios are presented, the grid-connected
one under the normal condition and the island one for blackout.

(c) bus voltages and (d) battery powers when ¢; = 0.01. For
battery power outputs, negative values represent the battery
discharging. In the DR-JCC framework, the microgrid system
curtails the increasing amount of solar power with a progres-
sively tighter joint violation rate in Fig. 5 (b). Fig. 5 (c) and (d)
show bus voltages and battery powers of individual households
with the average value. The bus voltages are regulated within
a range of +0.05 p.u..

The islanding operation of the microgrid is simulated for an
overcast day with a blackout between 4 A.M. - 6 P.M. Fig. 6
shows the simulation result. In Fig. 6 (b), when a blackout hap-
pens, flexible loads are curtailed, mainly phone changer (i.e.,
load spike at 17 P.M.) and fan at noon. Battery control refer-
ence follows the islanding mode solution during the blackout,
as blue solid lines in Fig. 6 (d).

We compute daily operation costs under six different relia-
bility requirements (i.e., 1 — ¢;) and three ambiguity sets with
the 12-hour islanding period. The error bars show the cost
deviations due to the islanding time from no blackout to a
full-day blackout. In summary, in Fig. 7, the daily operation
cost increases exponentially along with the system reliability
requirements for all three ambiguity sets, and extending the
islanding duration also increases the operation cost.

C. Solution Robustness and System Reliability

Following the performance demonstration, this section
presents solution robustness tests for the proposed evolutionary
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Fig. 7. Daily operation costs with the three ambiguity sets (with the error
bar to show the cost deviation due to the island hour from no blackout to a
full-day blackout).

TABLE III
SUMMARY OF THE AVERAGE DAILY RELIABILITY (%)
IN ALL ROBUSTNESS TESTS

Reliability 95% 98 % 99 %
Cases @ @ @ O @© O (© ® ®
SCC 91.5 919 899 946 949 923 974 975 946
JCC-B 97.8 981 953 993 994 982 998 998 99.3
JCC-P 943 946 917 979 981 954 994 994 984

SCC: Single chance constraints; JCC-B: Joint chance constraints (Baseline);
JCC-P: Joint chance constraints (Proposed)

algorithm and system reliability outcomes. We use forecast
error samples excluding those used to construct the ambiguity
set. We fix the solution obtained and run the power flow under
those forecast error samples, then count the case when all the
constraints are met (i.e., no-violation case). The percentage of
no-violation time intervals out of total time intervals in a day
is defined as the daily reliability outcome.

We test three joint violation rates which are 0.05, 0.02 and
0.01 (i.e., the corresponding daily reliability requirements are
0.95, 0.98 and 0.99) and consider three aforementioned ambi-
guity sets, symmetric, unimodal and symmetric & unimodal
sets. For comparison, we include another two methods, SCC
with all violation rates equal to the set reliability level, and
the baseline case, JCC with the Bonferroni Approximation. A
full factorial experiment of these settings gives a total num-
ber of 3 x 3 x 3 = 27 robustness tests. For each test, we
use 10,800 forecast error samples (i.e., 30 samples for each
15-min time interval) from the historical sample pool. Samples
in each time interval are from different days and independent.
Thus the power flow tests conducted in each time interval are
considered to be independent.

Fig. 8 shows results from all robustness tests. Each subplot
represents a combination of the daily reliability requirement
and ambiguity set. Three box plots in each experiment from
left to right show the results from SCC (blue circles), JCC
using the Bonferroni Approximation (orange triangles) and
the proposed algorithm for JCC (green squares) respectively.
Colored markers in each box plot are the daily results. Table III
summarizes the average daily reliability in all robustness tests,
and the reliability values closets to the set requirements are
highlighted in bold.
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Fig. 8. Summary of the full factorial robustness tests for three formulation

methods. (Titles of each plot shows the experiment setting; Black dash lines
show the reliability levels; Colored markers in the box plots are daily results
in each experiment).

The SCC method fails to meet reliability requirements in
all tests. More than half of its reliability outcomes are below
the set requirements (i.e., black dash lines in Fig. 8) and
the average daily reliability is also far lower than require-
ments (Table III). In contrast, JCC with the Bonferroni
Approximation gives an overly-conservative solution. In cases
except (g) and (h), the majority of daily reliability outcomes
are exactly or nearly 100%. This makes its average reliabil-
ity outcomes are highest and above the set requirements in all
cases. The proposed algorithm can decide the optimal trade-off
between the system reliability and operation cost. In each test,
more than half of its daily reliability meets the requirements
(i.e., the median of the box plot is all above the reliability
threshold), and its average reliability values in six of nine
cases are closest to the set reliability levels. In cases (g), (h)
and (i), the underlying uncertainty distribution assumption is
based on the unimodal & symmetrical set, which is the small-
est set among all three. The set can not fully incorporate all
true distributions and impacts the reliability performance. The
average values are below the reliability requirements.

For three ambiguity sets, the rank based on the system reli-
ability from the highest to the lowest is symmetric, unimodal
and unimodal & symmetric sets respectively. This result is
aligned with the operation cost (Fig. 7). When the set gets
more constrained, the solution becomes less reliable and the
operation cost becomes lower, and vice versa. In our case, the
unimodal & symmetric set is overly-constrained to describe
the true distribution of solar forecast errors. However, even
using the other two sets, there are a few discrete outliers in
particular days which are costly to address, unless using an
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ambiguity set including all possible distributions. A feasible
method for system operators could be to predict those par-
ticular days using the multi-year data and prepare the extra
storage for those times.

VI. CONCLUSION

The paper proposes a DR-JCC framework for microgrids
considering solar generation uncertainty and utility contingen-
cies. The framework models a networked microgrid with an
islanding capability and smart load shedding during black-
outs. Under imperfect solar forecasts, it optimizes chance
constraints pertaining to the power flow, voltage control and
battery limits jointly, to decide the optimal trade-off between
the operation cost and system reliability.

To find the optimized individual violation rates for the JCC
problem, we propose a novel population-based evolutionary
algorithm to optimize the decision variables and individ-
ual violation rates simultaneously. Results clearly show the
proposed algorithm can effectively solve the problem non-
conservatively. It can reduce the operation cost by around 50%
compared to the benchmark case, which has evenly individ-
ual violation rates (i.e., Bonferroni Approximation). Moreover,
the individual violation rates from the proposed method indi-
cate the cost sensitivities of constraints. A higher violation rate
means this constraint is more influential to the total cost.

For solution robustness, we consider three ambiguity sets for
solar power forecast error distributions, unimodal, symmetric
and unimodal & symmetric sets, based on empirical samples.
We solve the model based on these set assumptions and then
test the constraint violations with new forecast errors. Under
the well-fitting ambiguity set assumption, the solution from the
proposed method can control the system to closely meet the
reliability requirements. The single chance-constrained formu-
lation widely used in current research and practices, however,
shows poor performance in securing reliability.

Future research will investigate the implementation of the
convex AC OPF such as [53] which incorporates active, reac-
tive generation limits and power losses. This research will
study how individual violation rates change with power flow
conditions such as line congestion and heavy loading. Another
important area is to implement this approach in the transmis-
sion network operation and planning (e.g., [16], [54]) which
can shift the paradigm in risk and reliability management
especially under extreme weather and create greater value by
saving million-scale reserve procurement costs.
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